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ABSTRACT 
Refueling outages are one of the most challenging phases in a nuclear power 

plant (NPP) operating cycle. Refueling outages are extremely costly for an NPP 
due to the large amount of required resources and because of lost revenue due to 
plant being off the grid. Outage durations have steadily decreased across the 
industry over that last few decades primarily due to improved planning and 
coordination, but there are still many plants that struggle to meet the performance 
metrics accomplished by other utilities. Schedule resilience is one of the issues. 
NPP outages require scheduling thousands of activities within 30 days on 
average. Outage staff begin working on the schedule more than a year ahead of 
time and make every effort to build a robust schedule. Despite detailed planning, 
once the outage starts, numerous emergent issues typically appear along with 
schedule delays requiring continuous replanning and adjustment. When schedule 
disruption occurs during an outage, plant staff make urgent efforts to recover but 
are often not able to maintain the planned outage duration. These outage delays 
can cost a utility several million dollars per day. Tools that could help outage 
schedulers create a more resilient schedule and allow them to optimally 
reschedule emergent work could significantly reduce outage delays. One key 
aspect of creating a resilient schedule is to have accurate estimates for activity 
duration. Another important outage scheduling capability is the ability to 
schedule emergent work with minimal disruption. The Optimization of Outage 
Activities project under the Risk Informed Systems Analysis Pathway (RISA) 
sponsored by Department of Energy (DOE) Light Water Reactor Sustainability 
(LWRS) Program focuses on developing tools and methods to support NPPs with 
outage schedule optimization. The goal of the outage optimization is the 
completion of all planned and emergent outage activities as fast as possible while 
maintaining the highest level of safety. This report describes the initial 
development of tools to support outage management that leverage computational 
and machine learning methods developed within other RISA and LWRS projects. 
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Tools and Methods for Optimization of Nuclear Plant 
Outages 

1. INTRODUCTION 
Nuclear power plant (NPP) refueling outages represent one of the more challenging aspects of 

managing a light water reactor (LWR) facility. Refueling outages typically require completing over 
10,000 scheduled activities representing several thousand work orders in around 30 days. Most utilities 
use numerous contract workers to support outage activities, adding to the complexity and cost. Since the 
reactor is taken offline to perform this work, the utility is not generating revenue during the outage. The 
cost of lost revenue can be up to $2 million per day. To complete outages as efficiently as possible, 
planning begins more than a year before the start of the outage. Significant effort is placed on creating a 
schedule that minimizes outage duration with all the required work to be completed. In addition to the 
known work being scheduled for the outage, there may be several hundred emergent activities added to 
the schedule during the outage. This added work is typically referred to as scope growth. Most utilities 
have a formal process to limit scope growth to only those activities that are absolutely necessary, but there 
is always some work that must be added. This added scope, combined with activities that have slipped 
from the original schedule requires daily schedule realignment. While the outage managers have nearly a 
year to create the initial schedule, they may only have a few hours to reschedule each day. This difficulty 
in rescheduling is one of the reasons outage durations almost always exceed the original plan. When a 
refueling outage has a significant delay, the cost is substantially increased due to the necessity for the 
contract workers to stay on-site longer. Outage contract workers often move from site to site during 
outage season (spring and fall) supporting multiple utilities and the extension of their contracted work is 
typically difficult and expensive. 

1.1 Background on Outage Scheduling 
Plant outage scheduling is a very complex endeavor which requires a large amount of data and 

complex tools. The required data comprise the following: 

• Data describing activities to be performed, including the following information: 

- Each activity’s duration 
- Required resources for each activity 
- Dependencies between activities (i.e., the set of activities that needs to be completed prior to 

starting the activity under consideration) 
− Note that dependencies may be very heterogenous (e.g., system logic driven, tech-specs 

driven, plant risk1 driven, or based on plant conditions) 
• Data describing available resources for each day of the outage. 

Provided the data listed above, schedule optimization tools developed in this project are designed to 
lay out the outage plan daily which includes: 

• The subset of activities to be completed each day 

• Activity time window 

• Plant personnel are required to perform each activity. 

 
1 Typically, plant risk considerations are modeled through the plant probabilistic risk assessment (PRA) model. 
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Scheduling optimization tools develop an outage plan so that overall outage duration is minimized, 
with all activities completed. This minimization process carefully balances (throughout the optimization 
algorithm): activity duration, activity dependencies, and available resources. 

An example of a plant outage activity scheduling plan is shown in Figure 1. Each node of the graph is 
a single activity and the edges between nodes represent dependencies among activities. The example 
schedule plan consists of eight activities (labeled using characters ranging from A to H) and the shown 
graph structure indicates that A corresponds to the initial activity while E corresponds to the final one. 
Activities F, B, and H can start after activity A is completed. The entire process is finished once activity E 
is completed. 

The predicted completion time of an outage activity is of a particular interest. The predicted 
completion time is calculated by first determining the critical path (CP) which is the longest path 
(temporally speaking) from the initial to the final activity. From Figure 1, it is possible to identify four 
possible paths from A to E: 

• Path 1: A-F-G-E (path duration = 50) 

• Path 2: A-B-C-G-E (path duration = 60) 

• Path 3: A-B-C-D-E (path duration = 65) 

• Path 4: A-H-E (path duration = 45). 

Out of these four paths, the third one (characterized by the highest duration) is the CP; in other words, 
activities A, B, C, D, and E comprise the CP. This implies that if the actual completion time of these 
activities increases, then the overall outage schedule will increase as a result. On the other hand, if the 
actual completion time of the activities that are not part of the CP increases, the overall outage duration 
may not increase. Thus, from an outage management perspective, the activities on the CP are typically 
closely monitored for potential delays and plant resources are reallocated if unexpected events occur. 

Other elements of interest, which are calculated after the optimization process, are how early/late an 
activity can start/finish. The values are often indicated as earliest start time (EST), latest start time (LST), 
earliest finish time (EFT), and latest finish time (LFT). Last, for activities that are not part of the CP, the 
parameter total float (TF) is calculated. This parameter indicates how much an activity can be extended 
before it becomes a part of the CP (see Figure 2). Similarly, for the activities that are part of CP, the 
parameter drag is calculated. This parameter indicates how much such activity can be reduced before it 
gets moved out of the CP (see Figure 2). In summary, all activities indicated in the schedule shown in 
Figure 1 are described using the convention shown in Figure 3. 
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Figure 1. Example of plant outage scheduling 
plan(source:https://en.wikipedia.org/wiki/Critical_path_method). 

 
Figure 2. Graphical representation of TF and drag associated with an activity. 

 
Figure 3. Summary of the defined and quantified parameters associated with an activity. 

The process of outage scheduling planning and optimization described above, also known as the 
critical path method (CPM), is fairly mature and it has been widely used in the nuclear industry. However, 
a few criticalities can emerge when this approach is applied in a real context: 

• The duration of activity is typically considered a point value while in reality, the actual duration is a 
variable based on past operational experience. The uncertainty in activity duration can be expressed in 
various ways (e.g., by providing): 

- The average duration value accompanied by a measure of its variance 
- The range of possible duration values is bounded by the observed minimum and maximum 

duration. 
• There are multiple sources of duration uncertainties: number of people and skills of the assigned 

crew, operational conditions (e.g., weather), time of the day when activity is performed. 

https://en.wikipedia.org/wiki/Critical_path_method
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• The duration of an activity might be affected by the emergence of an event (that can be stochastic in 
nature) which needs to be addressed prior to the completion of such activity. This can have an impact 
on the actual activity completion time. 

• New activities can materialize once the outage has started. The emergent activities must be 
incorporated into the schedule, including dependencies with other activities. 

1.2 Objectives 
The objective of this research project is to develop methods and tools to support plant staff in creating 

an outage schedule that has a high probability of completion in the desired timeframe. The research team 
interviewed outage managers and staff from three utilities. Each interviewee described similar problems 
experienced at their plant and all thought that better tools for evaluating outage schedules are needed. To 
improve on the current CP methodology used by most utilities as described in the previous section, we are 
investigating a method to calculate schedule resilience by creating a model of the schedule. 

A resilient schedule is one that has been analyzed and adapted to account for the duration uncertainty 
capable of reorganizing activities to better absorb duration variability. A resilient schedule also presents 
margins for highly uncertain, non-CP activities. Last, a resilient schedule should have the capability to 
absorb the expected amount of scope growth without a significant disruption to the planned duration. 

The tools for outage scheduling could be used in two main phases of the outage cycle. In the outage 
planning phase, the schedule optimization tool would help staff identify activities with a planned duration 
significantly different from historically witnessed durations. It would also point out the non-CP strings of 
activities that have high uncertainties in their durations and therefore have a high probability of becoming 
the CP. Identifying these high-risk strings of activities and recommending alternative schedule options to 
reduce the overall schedule completion uncertainty will help improve the overall schedule resilience. If 
some highly uncertain strings of activities must remain in the schedule, the tool would highlight them so 
that outage staff can maintain proper focus and oversight of those specific tasks to improve the chances of 
on-time completion. During the outage execution phase, the proposed tool would make recommendations 
on the best placement of emergent work activities on the schedule to maintain the highest level of 
resilience and to minimize the chances and magnitude of outage extensions. 

In order to effectively model schedule resilience, we need activity duration uncertainty information 
along with the usual planned activity duration that is currently used in the CP methodology. In this case, 
each activity is assigned a duration distribution rather than a simple duration estimate. Various machine 
learning and artificial intelligence (ML/AI) methods will be investigated to automatically assign activity 
duration distributions based on the analysis of historical outage performance data. In cases where data are 
not sufficient to assign a duration distribution, a schema will be developed of a standard distribution to 
the assigned duration based on generic average completion time distributions for common types of work 
activities such as valve refurbishment, erecting scaffolding, circuit breaker refurbishment, etc. 

While the concept of schedule resilience is understandable, specific metrics will need to be developed 
based on the schedule modeling to allow for automated optimization and recommendations. These metrics 
for schedule resilience will assist the outage schedulers in visualizing potential issues with the planned 
schedule and provide information useful in evaluating alternative scheduling options. 
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2. ADVANCED OUTAGE SCHEDULE MODELING 
As indicated in Section 1.1, current outage schedule optimization methods rely on an activity duration 

expressed as a point value. However, the duration of an activity can be affected by many factors that can 
be either internal (e.g., number of personnel performing the task, plant crew workload) or external (e.g., 
discovery of a component failure during the inspection). Representing the effect of these factors on the 
activity duration via a single point value might have a major negative impact on schedule management 
during the outage. 

The ability of a planned outage schedule to withstand a delay in the completion time of an activity 
(indicated with the term robustness) or to be able to counteract a change in an activity completion time 
(indicated with the term resilience) significantly increases the probability of the outage completion as 
predicted during the planning phase. From a plant operational standpoint, this also has an economic 
impact since, on average, each day of lost production (e.g., caused by outage delay) costs up to $2M in 
terms of revenue. While the estimation of activity duration values from past outage data is presented in 
Section 3, this section focuses on how uncertainties associated with activity completion time can be used 
to measure robustness and resilience of an outage schedule. 

As a starting point, we need the ability to: (1) propagate activity duration uncertainties through an 
outage schedule (here indicated as CP uncertainty), and (2) evaluate how uncertainties associated with an 
activity duration affect CP completion time, activity drag, and activity TF. The propagation of activity 
duration uncertainties can be performed by assigning a probability distribution function (pdf) to an 
activity duration instead of reliance on a point value. This uncertainty quantification can then be easily 
performed through a classical Monte-Carlo sampling method. Note that when activity duration 
uncertainties are propagated through an outage schedule, the actual structure of the CP might change 
depending on the chosen activity duration values. In other words, depending on the sampled activity 
duration values, the sequence of activities that are part of the CP can differ. As an example using the 
simple outage schedule shown in Figure 1, if the duration of activity G becomes 15 (instead of 5), then 
the CP becomes A-B-C-G-E with a CP duration set to 75 (instead of a CP equal to A-B-C-D-E with a CP 
duration set to 65). Hence, when propagating activity duration uncertainties through an outage schedule it 
is relevant to track the set of possible CPs, their likelihood of occurrence, and their duration uncertainty. 

The estimation of the robustness and resilience of a CP is performed by comparing the pdf associated 
with activity duration and the corresponding drag or TF values. For the activities that are part of the CP 
(see Figure 4), the activity duration pdf is compared with the duration point value used for the outage 
schedule (indicated in green in Figure 4). The portion of the pdf greater than the employed duration point 
value automatically adds delay to the CP. The portion of the pdf lower than the employed duration point 
value indicates the possibility that plant resources (i.e., crew personnel) can become available to reduce 
completion time of parallel or subsequent activities (see CP resilience). 

 
Figure 4. Analysis of activity duration uncertainty (represented through a histogram shown in blue) for an 
activity which is part of CP. 
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Similar discussion applies for activities not on the CP (see Figure 5): the portion of the pdf lower than 
the employed duration point value would allow plant resources to be available to reduce completion time 
of other activities. The portion of the pdf greater than the TF implies that such activity would become part 
of the CP. In this situation, the CP would change which would negatively impact outage completion time. 
The remaining portion of the pdf (i.e., located within the TF) is characterized by the fact that such activity 
duration delay would not affect the CP (see CP robustness). 

 
Figure 5. Analysis of activity duration uncertainty (represented through a histogram shown in blue) for an 
activity which outside the CP. 

The development of analytical tools designed to assess CP uncertainty, robustness, and resilience 
started during fiscal year 2023 (FY-23). Such tools are based on the Idaho National Laboratory 
(INL)-developed open-source code RAVEN2. Here, the user has the possibility to import the outage 
schedule into RAVEN through an input file. As an example, the input file for the outage schedule based 
on the plan shown in Figure 1 is described in Figure 6: each of the eight activities are initialized with their 
specific duration time while the outage plan structure is provided as a graph structure where, for each 
node of the graph (i.e., an activity), the directly dependent activities are defined. Provided an outage 
schedule (e.g., the one shown in Figure 6), the model is able to determine the CP and the scheduled 
completion time. 

Using RAVEN, it is possible to propagate uncertainties associated with activity duration through the 
outage schedule. This can be performed by defining a pdf for each activity duration and choosing the 
desired sampling strategy (e.g., Monte-Carlo or Latin Hypercube Sampling). Once the sampling has been 
completed, RAVEN provides a database that contains a pdf of the CP completion time and an alternative 
set of CPs. 

 
2 Official website: https://raven.inl.gov/SitePages/Overview.aspx  

https://raven.inl.gov/SitePages/Overview.aspx
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Figure 6. Outage plan (also shown in Figure 1) defined in our outage analysis tools. 

As an example, the pdfs associated with each activity of the example outage plan shown in Figure 1 
are listed in Table 1. The duration uncertainties were propagated using RAVEN. The results are shown in 
Figure 7 which presents the pdf of the CP completion time (left plot), and the histogram of the possible 
CPs. Of interest is that the original CP (i.e., A-B-C-D-E) occurs with a 0.762 likelihood while the CP 
indicated as A-B-C-G-E occurs with a 0.237% likelihood. Last, the CP A-F-G-E occurs with a 2.E-4 
likelihood. 

Table 1. Set of pdfs associated with each activity of the outage plan shown in Figure 1. 
Activity ID pdf 

Start U(8,12) 
B U(15,25) 
C U(4,8) 
D U(8,12) 
End U(19,25) 
F U(12,20) 
G U(4,12) 
H U(12,21) 
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Figure 7. Propagation of the uncertainties specified in Table 1 for the outage shown in Figure 1: CP 
completion time (left plot), and the histogram of the obtained CPs. 

The next step is the assessment of CP resilience and robustness. CP robustness 𝑅𝑅𝑅𝑅𝑅𝑅 can be computed 
by analyzing the fraction of the samples characterized by a CP completion time less than the base CP 
completion time. More precisely, provided the pdf of CP completion time 𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, CP robustness 
𝑅𝑅𝑅𝑅𝑅𝑅 can be solved analytically by integrating it up to base CP completion time (indicated as 
𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡) as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅 = ∫ 𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) 𝑝𝑝𝑡𝑡𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡
−∞   (1) 

For the case shown in Figure 1, the base 𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑅𝑅𝑏𝑏𝑏𝑏𝑡𝑡 = 65. The concept of resilience will be 
further developed in FY-24 since considerations of resources must be included. 
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3. MINING ACTIVITY DURATION DATA 
3.1 Use-Cases 

In this effort, two datasets were used from nuclear facilities. Both datasets contained a brief activity 
description, usually in the order of less than ten words, and timestamps of when the activity was predicted 
to start/end, and when it actually started/ended. Each activity had an alphanumeric code that seemed to 
follow a certain undefined structure. Given the sparsity of the activity description text, it was desired to 
connect each activity to the actual work scope performed. However, there was no connection established 
between an activity and the corresponding work order, and the outage work management data were not 
available. This was the case for both datasets. This section describes the performed evaluation 
determining whether it is possible to predict activity durations from the short activity description. This 
evaluation was conducted using two approaches: (1) a natural language processing approach and (2) a 
semantic text-mining approach. 

3.2 Natural Language Processing for Duration Prediction 
Using the provided dataset, this section describes exploration of a direct correlation between word 

occurrence in the activity description and the activity’s predicted duration. This is followed by 
establishing the correlation between word occurrence in the activity description and the activity actual 
duration. 

To examine how well the scheduler is predicting the activity durations, a plot is generated to correlate 
actual times needed to complete the job versus the predicted times in the schedule. Three different 
correlation methods were used as shown in Table 2 and each method was compared to a random data 
correlation. Pearson’s r [1] is a normalized covariance between the planned hours and the actual hours 
taken to complete the activity. If the predictions and actual hours are centered (mean of zero), covariance 
is the prediction multiplied by the actual hours for each datapoint. The average of those products is 
covariance. To normalize covariance, it is the divided by both the standard deviation of the predictions 
and the actual hours. This gives Pearson’s r. The correlation coefficient found using Pearson’s r 
coefficient is 72.8%. Details on the other two methods can be found in [2,3]. Spearman’s Rho is based on 
the monotonic correlation of the two variables (i.e., if one increases, the other increases as well). 
Kendall’s Tau is similar but differs in the way the monotonic behavior is mathematically described. 

Table 2. Summary of the correlation results using three different correlation methods. 
Correlation Type Original Forecast Machine Learning Forecast 

Log10 Transformed Data Pearson’s r  72.8% 77.1% 
Spearman’s Rho (transformed or 
untransformed) 

67.7% 73.5% 

Kendall’s Tau (transformed or untransformed) 55.5% 57.5% 
Random Data (r, Rho or Tau) 0% 0% 

 
The data are also shown in Figure 8. The number of datapoints used for this evaluation was 

approximately 1,000. The red error margins represent the margin for where 95% of the data are located 
and is calculated as3: red upper/lower margin = mean actual value ± 1.96 of the error standard deviation. 

 
3  The margins are created after the errors are smoothed out using a 3rd to 5th order polynomial of red error margin as a 

function of the fitted values. 
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The 95% uncertainty is on the order of tens to more than a hundred of hours. This is especially visible 
for the activities that are around the typical mean time of an activity. From this analysis, we can conclude 
that either the scheduler is unable to accurately predict the activity duration or that the plant staff are not 
logging the actual completion times, causing this very large discrepancy. 

The hypothesis tested here is whether a machine can perform better in predicting activity durations. A 
machine learning model was developed using a fine-tuned Sentence-BERT (SBERT) transformer [4] on 
the activity description using a masked language model. A masked language model has the task of 
deleting words from a task description in the input to the neural network and then trying to predict the 
correct words that were deleted. This is a type of autoencoder and it is therefore unsupervised. 

Next, the supervised task of predicting activity durations using a regressor is performed. The 
transformer neural network fine-tuned previously would output 7,168 dimensional embeddings. These 
embeddings were used to train a CatBoost regressor [5] on 80% of embeddings, then the CatBoost model 
forecasted 20% of the embeddings. The number of datapoints used for this evaluation was also 
approximately 1,000. All activities with fewer than 0.25 hours worked were discarded. The results of the 
prediction are shown in Table 2. The data are shown in Figure 9. The correlation coefficient is 0.77, 
indicating more consistent results. However, given the log scale use, this also represents tens to more than 
a hundred hours of uncertainty. Therefore, it is apparent that a machine cannot predict the activity 
duration given the short activity description. 

 
Figure 8. Plot of work hours forecasted by the scheduler versus the actual hours worked. 
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Figure 9. Plot of work hours forecasted by machine learning versus the actual hours worked. 

To further compare the performance of the scheduler versus the machine, the differences between 
scheduler-predicted planned and actual activity durations are plotted against the difference of the 
machine-predicted durations. This is only performed for 20% of the data since the remaining 80% of the 
data were used for training of the CatBoost + SBERT transformer algorithm. The result is shown in 
Figure 10. The error statistics of both the planned/scheduled and predicted durations show that a machine 
tends to predict higher values, while the scheduler tends to predict smaller values. The figure also shows 
that the machine predictions resulted in smoother prediction since it was able to predict fractions of hours, 
unlike the scheduler, often in 0.25–1 hour increments. To overcome this distinction, a classifier is used 
instead of a regressor to place each activity into the bins shown in Table 3. For each bin, a count of the 
misclassification is listed in each cell. The table indicates that the machine was better in predicting low 
number of hours but suffered as the number of hours increased in comparison to the scheduler. 
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Figure 10. Plot of difference of work hours forecasted by machine learning or scheduler and the actual 
hours worked. 

Table 3. Confusion matrix discretized for 1, 3, 5, 10, 100, 1,000, and more hour differences. 
Error Type (0,1) (1,3) (3,5) (5,10) (10,100) (100,1000) 1000+ 

Planned Error 534 207 89 72 150 13 0 
Machine-Predicted Error 428 293 100 73 149 22 0 

 

3.3 Text Semantic Similarity for Duration Prediction 
A parallel research direction to the one shown in Section 3.2 was to evaluate completion time of an 

activity using text semantic similarity. The basic idea is to identify the subset of activities performed in 
previous outages that are similar to the activity being queried. Then the temporal distribution of the 
queried activity can be determined by collecting the historical completion time from the subset of past 
activities. 

An example of textual similarity is shown in Figure 11 where two activities with similar semantic 
meanings are compared which brings up the importance of data cleaning and data curation. The example 
provided in Figure 11 suggests that if we were to perform a simple word-to-word similarity between those 
two activities, they would be very dissimilar. On the other hand, if the historical activity were to be 
cleaned (e.g., through spell checking, and abbreviation identification and expansion), then it would be 
transformed into “[ACC01-B] PRESSURE TRANSMITTER CALIBRATION.” Consequently, the two 
activities would be very similar. 
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The elements required for the semantic similarity analysis are: 

• The set of past outage activities. This set might be partitioned on several datasets, a dataset for each 
outage. Outage of different plant units, different plants, or different utilities can be gathered to 
improve analysis results. 

• A computational method designed to compute the semantic similarity between two activities (i.e., the 
queried and historic activity) which would generate a point value which measures “how similar” the 
two activities are. An important note here is that the computational time for such a method needs to 
be very small since the similarity search for a queried activity in a database of tens of thousands of 
past activities needs to be performed within minutes. 

In this project, we focused on the development of the semantic similarity method and on the testing of 
this method on several outage databases. The following sections provide details of the development and 
present a high-level overview (to mask proprietary data) of the obtained results. 

 
Figure 11. Example of semantic similarity between a queried and a historical outage activity. 

3.3.1 Textual Similarity Analysis 
Words, sentences, and documents similarity analyses are an active part of recent NLP methods 

development, and these analyses play a crucial role in text analytics such as text 
summarization/representation, text categorization, and knowledge discovery. There is a wide variety of 
methodologies that have been proposed during the past two decades. Mainly, these techniques can be 
classified into five groups: (1) lexical knowledge base approach, (2) statistical corpus approach (word co-
occurrence), (3) machine learning/deep learning approach, (4) sentence structure-based approach, (5) 
hybrid approach. However, there are several common major drawbacks for these approaches: (1) 
computationally inefficient, (2) lack of automation, (3) lack of adaptability and flexibility. In this 
research, we are trying to address these drawbacks by developing a tool that can be used generally in any 
application requiring a similarity analysis. 

As shown in Figure 12, we are trying to leverage part of speech (POS), disambiguation, lexical 
database, domain corpus, word embedding/vector similarity, sentence word order, and sentence semantic 
analysis to calculate sentence similarity. POS is used to parse a sentence and tag each word/token with 
POS tag and syntactic dependency (DEP) tag. This information provides syntactic structure information 
(i.e., negation, conjecture, and syntactic dependency) about the sentence that can be used to guide the 
similarity measuring process. The disambiguation approach is employed to determine the best sense of 
the word, especially when coupled with a specific domain corpus. It will ensure the right meaning of the 
words (e.g., the right word synsets in the lexical database) among the sentence for comparison. 

Then, a predefined word hierarchy from lexical database (i.e., WordNet) is used to compute the word 
similarity. However, some words are not contained in the lexical database since it only connects four 
types of POS – nouns, verbs, adjectives, and adverbs. Moreover, these words are grouped separately and 
do not have interconnections. For instance, nouns and verbs are not interlinked (i.e., the similarity score 
between “calibration” and “calibrate” is 0.091 when using WordNet). In this case, machine-learning-
based word embedding is introduced to enhance the similarity calculation. For the “calibration” and 
“calibrate” example, the similarity score becomes 0.715 instead. The next step is to compute sentence 
similarity by leveraging both sentence semantic information and syntactic structure. The semantic vectors 
are constructed using the previously introduced word similarity approach, while the syntactic similarity is 
measured by word order similarity. The following sections further describe each of the steps in more 
details. 
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Figure 12. Illustration of sentence similarity calculation. 

3.3.2 Part of Speech (POS) for Similarity Analysis 
POS provides information about word types and morphological features, and dependency parsing 

provides dependency syntactic information between words. Utilizing POS and dependency parsing can 
help to identify the important information, such as NOUN, VERB, ADJ, ADV, negation, conjecture, 
subject, and object, which will be used to compute the sentence syntactic similarity. 

3.3.3 Lexical Database 
Lexical databases, such as WordNet, have semantic connections between words which can be utilized 

to determine the semantic similarity of the words. WordNet is a lexical information database originally 
created by Princeton University. It contains words, their meanings (e.g., synsets), and their semantic 
relationships which are stored in a hierarchy tree-like structure via linked synsets. Each synset denotes the 
precise meaning of a particular word, and its relative location to other synsets can be used to calculate the 
similarity between them. 

As summarized in Reference [6], there are many different methods to compute word similarity using 
WordNet and sometimes these methods are combined to enhance the similarity calculation. In this work, 
we employ the method proposed by [7] to compute the similarity score between two words/synsets as 
presented in Eq. (2). This method combines the shortest path distance between synsets and the depth of 
their subsumer (e.g., the relative root node of the compared synsets) in the hierarchy. In other words, the 
similarity score is higher when the synsets are close to each other in the hierarchy, or their subsumer 
locates at the lower layer of the hierarchy. This is because the lower layer has more specific features and 
semantic information, as compared to the upper layer. 

𝑆𝑆𝑤𝑤(𝑤𝑤1,𝑤𝑤2) = 𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙𝑡𝑡ℎ(𝑙𝑙) ⋅ 𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡ℎ(𝑝𝑝) = 𝑡𝑡−𝛼𝛼𝑙𝑙 ⋅  𝑡𝑡
𝛽𝛽𝛽𝛽−𝑡𝑡−𝛽𝛽𝛽𝛽

𝑡𝑡𝛽𝛽𝛽𝛽+𝑡𝑡−𝛽𝛽𝛽𝛽
   (2) 

where 𝛼𝛼 ∈ [0,1],𝛽𝛽 ∈ [0, 1] are parameters scaling the contribution of shortest path length and depth 
respectively. 
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The optimal values of 𝛼𝛼 and 𝛽𝛽 are dependent on the knowledge base used and can be determined 
using a set of word pairs with human similarity ratings. For WordNet, the optimal parameters for the 
proposed measure are: 𝛼𝛼 = 0.2 and 𝛽𝛽 = 0.45, as reported in Reference [8]. 

3.3.4 Associating Word with the Best Sense (Disambiguation and Domain-
Specific Corpus) 

A sense represents the precise meaning of given word under specific context. Disambiguation is the 
process to identify the best sense for a word in the context of a statement. Without proper disambiguation, 
errors could be introduced at the early stage of similarity calculation when using lexical databases. For 
example, in WordNet synsets are used to denote the senses of the word and they are linked to each other 
by their explicit semantic relationships. When different synsets are used in calculating word pair 
similarity, their semantic relationship can be drastically different, which can significantly affect the 
similarity score. In this work, we try to disambiguate the word sense by considering the context of the 
word. One way to do this is to take into account the surrounding words since they can provide the 
contextual information. However, this may not work for simple or short sentences. In this case, the 
domain-specific corpus can be leveraged to disambiguate the word. Once the best senses are identified for 
the words, the word similarity measure from Section 3.3.3 can be employed. 

3.3.5 Word Embedding/Vector 
A word embedding or word vector is typically a numerical vectorization of words or documents. It 

maps words with semantic similarities to have close embedding vectors. Thus, word embedding can be 
used to measure semantic similarities utilizing cosine similarity metrics between the embedded vectors. 
This is especially useful when WordNet fails in situations such as similarities between words that have 
different POS tags. In this work, word embedding is leveraged to assist the word similarity calculation. 
Once the similarity score from the WordNet similarity calculation is below 0.2 (e.g., the two words are 
not similar), the word embedding similarity calculation is employed. 

3.3.6 Sentence Similarity 
As proposed in Reference [7], sentence similarity contains semantic and syntactic similarity. 

Semantic similarity is captured via word semantic similarity as discussed in previous sections, while 
syntactic similarity is measured by word order similarity. Word order similarity is a way to assess 
sentence similarity considering order of words. As described in Reference [7], the semantic vectors and 
word order vectors are constructed and can be used to compute the sentence similarity. Here, we briefly 
introduce the methods to construct these vectors and refer the reader to Reference [7] for more details. 

Given two sentences, 𝑇𝑇1 and 𝑇𝑇2, a joint word set is formed (e.g., 𝑇𝑇 = 𝑇𝑇1 ∪ 𝑇𝑇2) with all the distinct 
words from 𝑇𝑇1 and 𝑇𝑇2. The vectors derived from computing word similarities in (𝑇𝑇,𝑇𝑇1) and (𝑇𝑇,𝑇𝑇2) are 
called the semantic vectors, denoted by 𝑏𝑏1 and 𝑏𝑏2, respectively. Each entry of the semantic vectors 
corresponds to the maximum similarity score between a word in 𝑇𝑇 and a word in 𝑇𝑇1 or 𝑇𝑇2, so the 
dimension equals the number of words in the joint word set. The semantic similarity between two 
sentences is defined as the cosine coefficient between two vectors: 

𝑆𝑆𝑏𝑏 = 𝑏𝑏1⋅𝑏𝑏2
‖𝑏𝑏1‖‖𝑏𝑏2‖

  (3) 

As proposed by Reference [7], the word order similarity of two sentences is defined as: 

𝑆𝑆𝑟𝑟 = 1 − ‖𝑟𝑟1−𝑟𝑟2‖
‖𝑟𝑟1+𝑟𝑟2‖

  (4) 

where the word order vectors 𝑟𝑟1 and 𝑟𝑟2 are formed from (𝑇𝑇,𝑇𝑇1) and (𝑇𝑇,𝑇𝑇2), respectively. 
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For example, for each word 𝑤𝑤𝑡𝑡 in 𝑇𝑇, the 𝑟𝑟1 vector with the same length of 𝑇𝑇1 is formed as follows: if 
the same word is present in 𝑇𝑇1, the word index in 𝑇𝑇1 is used as the value for 𝑟𝑟1. Otherwise, the index of 
the most similar word in 𝑇𝑇1 will be used in 𝑟𝑟1. A preset threshold (i.e., 0.4) can also be used to remove 
spurious word similarities. In this case, the entry of 𝑤𝑤𝑡𝑡 in 𝑟𝑟1 is 0. 

Semantic and syntactic information (in terms of word order) each play a role in measuring the 
similarity of sentences. Thus, the overall sentence similarity is defined in [7] as a combination of: 

𝑆𝑆(𝑇𝑇1,𝑇𝑇2) = 𝛿𝛿𝑆𝑆𝑏𝑏 + (1 − 𝛿𝛿)𝑆𝑆𝑟𝑟  (5) 
where 𝛿𝛿 ∈ [0, 1] represents the relative contribution of semantic information to the overall similarity 

computation. 

3.3.7 Application of Similarity-Based Methods to Outage Analysis 
Section 3.1 provided an initial overview on how methods based on the textual semantic similarity can 

be employed during the planning phase of an outage to assess completion time variability of specific 
activities. There, a note was made about the importance of data curation (e.g., cleaning and 
reconstruction) of the textual elements that describe each activity. We highlight here again how our 
developed methods balance word and semantic sentence similarities. Thus, a sub-optimal data curation 
analysis might negatively impact the search for similar activities. 

More specifically, the process of data curation performed for all historical outage activities includes 
the following steps: 

1. Removal of component IDs. The presence of specific asset or system IDs (e.g., accumulator ACC-01B 
in Figure 11) do not necessarily provide any type of information from a semantic point of view and, 
hence, they can be removed from the actual text. This can be accomplished by either parsing the 
activity text or providing a list containing the full list of plant asset or system IDs. During our testing 
(see Section 3.3.8) such a list was not available, and we relied on an empirical method designed to 
remove all words containing a mixture of characters, numbers, and symbols. 

2. Abbreviation handling. NPP outage activities are usually short sentences which often contain 
abbreviations. The presence of abbreviations negatively impacts the ability to extract knowledge from 
such texts. Hence, we have developed an NLP pipeline designed to identify abbreviations and replace 
them with their corresponding complete words. The starting point is a library of abbreviations that 
have been collected from documents available online. This library is basically a dictionary which 
relates an identified abbreviation to the corresponding set of words. A challenge here is that a single 
abbreviation might have multiple words associated with it. Similarly, a word might have multiple 
ways to be reduced. Handling of abbreviations in each sentence is performed by first identifying 
misspelled words. Then each misspelled word is searched in the developed library. If an abbreviation 
in the library matches the misspelled word, then it is replaced by the corresponding complete word. If 
no abbreviation in the library is found, then we proceed by searching for the closest one. If multiple 
words match the obtained abbreviation, then the word that fits most of the sentence context is chosen. 

3. Spellcheck. After the abbreviation handler method is completed, the remaining misspelled words are 
parsed through our spellchecking methods for a last correction. 

Once historical plant outage data have been cleaned, the similarity value between the queried activity 
and each historical activity is determined. This results in an array of similarity values with dimensionality 
identical to the number of historical activities, and the corresponding array (with identical dimensionality) 
containing the activity durations. 
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The computation of the predicted duration of the queried activity is determined by considering both 
the similarity and the duration arrays. More precisely, by setting a similarity threshold 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑟𝑟 (typically 
in the 0.7–0.9 range4), we are collecting elements of the duration array so the corresponding similarity 
measure is greater than 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑟𝑟. A relevant note to be highlighted here is that if the queried activity has 
never been completed in past outages, then no similar past activities with similarity value above 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑟𝑟 
will be found. This approach does not, in fact, perform any type of regression. 

3.3.8 Analysis Example 
An initial application of the developed methods was performed using the dataset provided by an 

existing United States (U.S.) NPP. This dataset contains activities performed during five outages. The 
number of activities varies from outage to outage but the data indicate activities in the [12000, 14000] 
range. The data cleaning described in Section 3.3.7 was performed for the activities contained in each of 
the five outages. This process required a large computational time, about 4 hours for each outage using an 
off-the-shelf laptop, which can be easily reduced by parallelizing such computation5. However, note that 
such computation is performed only once (i.e., when new outage data are available). 

A relevant feature of the provided datasets is that some activities are categorized using plant-specific 
labels. A label indicates the type of work performed in an activity (e.g., electrical, chemical, 
instrumentation and control). Note that a good portion of outage activities (about 30%) is not labeled. For 
those activities, the label NaN was assigned. About a hundred unique labels were identified. Figure 13 
shows the histogram of the number of activities contained in each of the 98 identified labels (including 
NaN) for a single outage data set. The x-axis that lists the 98 labels is masked to remove plant proprietary 
data. Such activity labeling can be used to limit the number of historic activities searched for. More 
specifically, if a label can be assigned to the queried activity, then the similarity search can be performed 
only for those historic activities that have the same label. 

Finally, regarding the similarity search, we performed several tests: 

1. Choose one outage dataset out of the available five datasets, and consider the other four datasets as 
the testing dataset. 

2. Randomly sampled an activity from the dataset chosen in 1. 

3. Determined the similarity values between the activity sampled in 2 and all the activities contained in 
the testing dataset. Figure 14 shows a snapshot of the actual code and the obtained results. Here, the 
similarity method (indicated as SentenceSimilarityWithDisambiguation) is used to measure the 
similarity value (indicated as similarity) between a queried activity (indicated as queryAct) and all 
activities contained in the instance of a cleaned outage data (indicated as cleanData2). The results 
are masked to hide proprietary information, but Figure 14 shows the obtained similarity values. For 
the shown case, about 20 similar activities were found. 

 
4 Recall that a similarity measure is in the (0,1] range where perfect similarity is indicated with the unitary value, while 

very low similarity values (near 0) will be assigned for dissimilar textual elements.  
5  The INL-developed code RAVEN (https://github.com/idaholab/raven) can be employed to parallelize the 

computation. 

https://github.com/idaholab/raven
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Figure 13. Histogram of the number of activities contained in each of the 98 identified labels (including 
NaN) for a single outage data set. 

 
Figure 14. List of obtained similar activities (field on the right which has been masked to preserve 
proprietary data) with the corresponding similarity value (on the left). 

Last, we employed the developed similarity methods to analyze the degree of similarities between all 
the activities that belong to the same outage dataset. 

1. Determined the similarity matrix 𝑀𝑀 = [𝑏𝑏𝑡𝑡,𝑗𝑗] (i.e., a squared symmetric matrix of size equal to the 
number of activities contained in the outage dataset) where each element 𝑏𝑏𝑡𝑡,𝑗𝑗 of this matrix contains 
the similarity value between activity 𝑡𝑡 and 𝑗𝑗 of the outage dataset. 

2. Determined the equivalent distance matrix 𝐷𝐷 = [𝑝𝑝𝑡𝑡,𝑗𝑗] (which is also a squared symmetric matrix with 
a size identical to 𝑀𝑀) where each element 𝑝𝑝𝑡𝑡,𝑗𝑗 contains the distance between activity 𝑡𝑡 and 𝑗𝑗 of the 
outage dataset; in our case 𝑝𝑝𝑡𝑡,𝑗𝑗 has been calculated simply as 𝑝𝑝𝑡𝑡,𝑗𝑗 = 1.0 − 𝑏𝑏𝑡𝑡,𝑗𝑗. 

3. Performed hierarchical clustering on the obtained matrix 𝐷𝐷. The outcome of this analysis is a 
dendrogram (see Figure 15) which is an effective way to visualize the relative distance of a set of data 
points for different resolution levels. The dendrogram shows that only few patterns can be identified 
by looking at dendrogram branches that are vertically spaced (e.g., right portion of the green portion 
of the dendrogram). 
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As a final note, we are developing an approach to evaluate and quantity the performance of the 
developed methods. These methods will be finalized in FY-24. 

 
Figure 15. Dendrogram obtained from the similarity values of the activities contained in a single outage 
dataset. 

4. CONCLUSION AND FUTURE VISION 
In summary, the objective of this research project is to develop methods and tools to help plant staff 

create an outage schedule with a high probability of completion in the desired timeframe. Many plants 
continue to struggle with completing outages within the planned duration. Most utilities use the CP 
methodology to analyze and optimize schedules. To improve the current CP approach used by most 
utilities, we are investigating a method to calculate schedule resilience by creating a model of the 
schedule. A resilient schedule is one that is analyzed and adapted to find task duration uncertainties that 
can be reorganized to absorb completion time variability. This tool would provide the staff with margins 
for highly uncertain, non-CP activities. A resilient schedule is also one that has the capability to absorb 
the expected amount of scope growth without significant disruption to the planned duration. 

The tools supporting outage activities may be used during outage planning and during outage 
progression. The outage planning can be improved by identifying activities where a planned duration is 
significantly different compared to the historical actual duration for the same activity. This would help to 
make the outage schedule more realistic. The planning tool would also identify non-CP strings of 
activities that have high uncertainties in their durations and therefore have a high probability of becoming 
a CP. Being informed about the high-risk activities strings allows alternative schedule planning options, 
which improves schedule resilience. The tool could highlight highly uncertain strings of activities that 
must remain in the schedule so that outage staff can maintain proper focus and oversight on those specific 
tasks to improve the chances of on-time completion. During the outage execution phase, the proposed tool 
would make recommendations for the best schedule for emergent work activities to minimize the chances 
or the magnitude of outage extensions. 
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In the initial stages of this project, various ML/AI methods were investigated to assess the possibility 
of automatically assigning activity duration distributions based on historical outage performance data 
analysis. Facilities provided schedule data and several methods were used to evaluate the schedule 
duration and variability. In general, it was determined that many ML/AI techniques fall short in 
interpreting the activity descriptions assigned by the utilities. In many cases, the use of abbreviations for 
activity descriptions limited the ability of the ML/AI tools to match an activity to other similar activities 
in the data set. The investigation of ML/AI capabilities will continue in the next phase of the project. 

We also investigated using ranges of values described by a probability distribution function to 
represent an activity duration instead of a single value duration. This work will also be expanded in the 
next phase of the project. In cases where data are not sufficient to determine a duration distribution, a 
schema will be developed to assign a standard duration distribution based on generic average completion 
time for common types of work activities such as valve refurbishment, erecting scaffolding, circuit 
breaker refurbishment, etc. 

While the concept of schedule resilience is understandable, metrics need to be developed based on 
schedule modeling for automated optimization and recommendations. These metrics for schedule 
resilience will assist the outage schedulers in visualizing potential issues and provide useful information 
for schedulers to evaluate alternative scheduling options. Initial concepts for resilience metrics are 
presented in this report and will be refined and expanded as the research continues. Additional future 
work will be done to integrate information available in the work management databases and improve the 
assignment of distributions to the activity durations. The project team will also create example use-cases 
using representative example schedules to develop user interfaces and demonstrate concepts for schedule 
resilience presentation and recommendations for optimization. 
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